根号怎么化简啊?

根号化简方法是将根号下的数字拆分成一个完全平方数和某个数字的乘积,然后将完全平方数开平方放到根号外面,但前提是根号内的是整数,如果是分数,则将该分数拆分成一个分数的平方数和某个数字的乘积。

根号是一个数学符号,也是用来表示对一个数或一个代数式进行开方运算的符号,若a_=b,那么a是b开n次方的n次方根或a是b的1/n次方,开n次方手写体和印刷体用表示,被开方的数或代数式写在符号左方√ ̄的右边和符号上方一横部分的下方共同包围的区域中,而且不能出界。如果该数字是偶数,除以2。

寻找一个数的因数意味着寻找一切可以通过相乘得到该数字的数字,它可以帮助你化简平方根。

如果该数字是偶数,那么你可以做的第一件事就是除以2。在这个例子中,√98变成√(2x49),因为98除以2为49。如果你的数字不能被2整除,尝试3,4,5,依此类推,直到你得到一个因数。

根号怎么算

勾股定理,直角三角形中夹直角两边的平方和,等于直角的对

边的平方。如图所示,我们

用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:勾2+股2=弦2

亦即:a2+b2=c2.这是几何学中最重要的一条定理,用途很广。 据我国古代数学名著《九章算术》记载,勾股定理是在几千多年前,由周朝的商高发现的,后来汉朝的赵爽对此作过注释。

因此,在我国,勾股定理又称“商高定理”。在西方国家,勾股定理叫作“毕达哥拉定理”,但毕达哥拉|发现这个定理的时间却远比我国的商高为

迟。

中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:

周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”

商高回答说:“数的产生来源于对方和圆这些形体的认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”

从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。[back]

趣话勾股定理

1955年希腊发行了一张邮票,图案是由三个棋盘排列而成。这张邮票是纪念二千五百年前希腊的一个学派和宗教团体 —— 毕达哥拉斯学派,它的成立以及在文化上的贡献。邮票上的图案是对数学上一个非常重要定理的说明。它是初等几何中最精彩的,也是最著名和最有用的定理。在我国,人们称它为勾股定理或商高定理;在欧洲,人们称它为毕达哥拉斯定理。

勾股定理断言:直角三角形的斜边的平方等于其它二边的平方的和。如果我们要找一个定理,它的出现称得上是数学发展史上的里程碑,那么勾股定理称得上是最佳选择。但是,如果人们要考究这个定理的起源,则常常会感到迷惑。因为在欧洲,人们都把这个定理的证明归功于毕达哥拉斯;但通过二十世纪对在美索不达米亚出土的楔形文字泥版书进行的研究,人们发现早在毕达哥拉斯以前一千多年,古代巴比伦人就已经知道这个定理。在我国西汉或更早时期的天文历算著作《周髀算经》中,第一章记述了西周开国时期(约公元前1000年)商高和周公姬旦的问答。周公问商高:“天不可阶而升,地不可将尽寸而度。”天的高度和地面的一些测量的数字是怎么样得到的呢?商高回答:“故折矩以为勾广三,股修四,径隅五。”即我们常说的勾三、股四、弦五。《周髀算经》里还这样记载:周髀长八尺,夏至之日晷一尺六寸。髀者,股也,正晷者,勾也。正南千里,勾一尺五寸,正北千里,勾一尺七寸。日益表南,晷日益长。候勾六尺,即取竹,空经一寸,长八尺,捕影而观之,室正掩日,而日应空之孔。由此观之,率八十寸而得径寸,故此勾为首,以髀为股,从髀至日下六万里而髀无影,从此以上至日,则八万里。

这段文字描述了中国古代人民如何利用勾股定理在科学上进行实践。钱伟长教授对这段文字作了详细的说明:“……商高,陈子等利用立竿(即周髀)测定日影,再用勾股法推算日高的方法。周髀高八尺,在镐京(今西安附近)一带,夏至日太阳影长一尺六寸,再正南千里,影长一尺五寸。正北千里,影长一尺七寸。祖先天才地用测量日影的办法,推算了夏至日太阳离地的斜高,用同理测定了冬至日的太阳斜高。又取中空竹管,径一寸长八尺,用来观测太阳,我们的祖先发现太阳圆影恰好充满竹管的视线,於是用太阳的斜高和勾股的原则,推算太阳的直径。这些测定的数据虽然非常粗略,和实际相差很远,但在三千年前那样早的年代,有这样天才的创造和实践的观测精神,是我们应该学习的。”由此,中国人把这个定理称为勾股定理或商高定理是完全有道理的。

但是,欧洲人称这个定理为毕达哥拉斯定理,也有他们的说法。因为是毕达哥拉斯本人,至少是毕达哥拉斯学派的某一成员首先给出了对这个定理符合逻辑的证明。虽然,毕达哥拉斯有不少杰出的证明,如利用反证法证明√2不是有理数,但最著名的就是证明勾股定理了。传说当他得到了这个定理时,非常的高兴,杀了一头牛作为牺牲献给天神。也有些历史学家说是一百头牛,这个代价可太大了!

勾股定理是数学上有证明方法最多的定理——有四百多种说明!希腊邮票上所示的证明方法,最初记载在欧几里得的《几何原本》里。

汉朝的数学家赵君卿,在注释《周髀算经》时,附了一个图来证明勾股定理。这个证明是四百多种勾股定理的说明中最简单和最巧妙的。您能想出赵老先生是怎样证明这个定理的吗?(提示:考虑黑边框正方形的面积计算)[back]

辉煌的勾股定理

我们以教材中介绍的勾股定理内容为基础,通过网络更进一步地了解勾股定理的发现、证明和应用,从生动的数学史料中了解到中国古代有着光辉灿烂的文化,在数学领域中形成了辉煌的数学文化,至少有二三十项数学成就,曾处于世界领先地位,如勾股定理。

首先,我国著名的《算经十书》最早的一部《周髀算经》。书中记载有“勾广三,股修四,径隅五。”这作为勾股定理特例的出现,为勾股定理的形成作了准备。《周髀算经》中还有关于勾股定理更精彩的描述:“若求邪至日,以日下为勾,日变为设,勾、股各自乘,并而开方除之,得邪至日。”已涉及到了一般的勾股定理。用式子表示出:弦(邪至日)等于勾平方加股平方的和开平方。可见,我国独立发现了勾股定理。

其次,从勾股定理的证明方法中,有效地受到了爱国主义教育。本章教材一共介绍了三种证法,”让我们开阔眼界,并让我们感受到:我国古代数学家赵爽利用勾股方园图证明勾股定理(P225,12题)是多么巧妙,是多么的简捷,“按弦图,又可以勾股相乘为朱实二,倍之,为朱实四。以勾股之差自乘为中黄实,加差实,变成弦实。”用式子写出来即是:2ab+(b-a)2=c2即护+b2=c2。融几何知识与代数知识于一体,真可谓“独具匠心”。在我国古代,这是一种多么新奇多么美妙的数学方法啊!如今,世界上还有许许多多的数学难题,等待着我们去攻充,以自己的勤劳与智慧去摘下一颗颗数学明珠。

通过这些生动数字史料的介绍,我们学习热情顿时高涨,都为我们祖国有这样的辉煌成就而感到自豪和骄做!爱国热情油然而生!这不但让我们受到了爱国主义教育,而且使我们从生动的史料中更深入理解了勾股定理。

数学哲学、数学史与数学教学有机结合,已成为当今世界研究的热点问题。

在研究勾股定理上网查资料的过程中,我们还想到了我国古代的祖冲之,求得Л的近似值,精确到小数点后第7位,领先世界一千多年;刘徽首创的割图术,秦九绍创“大衍求一术”,“杨辉三角”等及当今时代的著名数学家:华罗庚、苏步青、陈景润等的巨大成就和他们为国争光的爱国。[back]

中国古代数学家证明勾股定理

中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子:

4×(ab/2)+(b-a)2=c2,化简后便可得:

a2+b2=c2,亦即:c=(a2+b2)(1/2)

赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。以后的数学家大多继承了这一风格并且代有发展。例如稍后一点的刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已。国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。

图2 勾股圆方图中事实上,“形数统一”的思想方法正是数学发展的一个极其重要的条件。正如当代中国数学家吴文俊所说:“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展着的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续。”[back]

美国总统巧证勾股定理

学过几何的人都知道勾股定理.它是几何中一个比较重要的定理,应用十分广泛.迄今为止,关于勾股定理的证明方法已有500余种.其中,美国第二十任总统伽菲尔德的证法在数学史上被传为佳话.

总统为什么会想到去证明勾股定理呢?难道他是数学家或数学爱好者?答案是否定的.事情的经过是这样的;

在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德.他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨.由于好奇心驱使伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形.于是伽菲尔德便问他们在干什么?只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答到:“是5呀.”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩又说道:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心理很不是滋味。

于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题。他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法。

他是这样分析的,如图所示:

1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证法。

1881年,伽菲尔德就任美国第二十任总统后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统。”证法。

[back]

逆定理的推广

[back]

从勾股定理到费尔马大定理

中国科学院应用数学所 副所长 曹道民

提起歌德巴赫(Goldbach)猜想,很多三十多岁的人都听说过,因为我国的数学家曾对这猜想作出过杰出的贡献,特别是陈景润的结果到现在还是最好的。陈景润的事迹在八十年代曾在全国广泛流传,影响到当时很多的青年人,现在四十岁上下的从事数学研究的人,包括我自己,就是受到影响而走上科学研究之路的。

如果有人问起上世纪数学界中最重要的结果是什么,我相信很多人会说是费尔马(Fermat)大定理。这个悬置长达350多年的、比歌德巴赫猜想更著名的难题在1995年被英国数学家维尔斯(Wiles)彻底解决。1996年3月维尔斯因此荣膺沃尔夫(Wolf)奖。

首先,让我们来介绍费尔马大定理。

学过平面几何的人都知道,设a、b为直角三角形的直角的两条边长,则斜边的边长c跟a、b满足关系式c2 = a2 + b2 。中国人称它为《商高定理》,因为在古代的数学书籍《周髀算经》里记载古代数学家商高谈到这个关系式。更普遍也称为勾股定理,这是因为在《周髀算经》》中记载着“勾三,股四,弦五”,并且清楚地讨论了它们与直角三角形的关系,其后的著作中也有其他的勾股数。如《九章算术》中还有(5,12,13),(7,24,25),(8,15,17)等7组数。在西方,上述公式称为毕达哥拉斯定理,这是因为西方的数学及科学来源于古希腊,古希腊流使下来的最古老的著作是欧几里得的《几何原本》,而其中许多定理再往前追溯,自然就落在毕达哥拉斯的头上,要知道毕达哥拉斯被推崇为“数论的始祖”。

如果勾股定理的公式c2 = a2 + b2中的 a ,b ,c未知数,是第一个不定方程(即未知数的个数多于方程的个数)也是最早得出完整解答的不定方程,它一方面引导到各式各样的不定方程,另一方面也为不定方程的解题程序树立了一个范式。

法国人费尔马(Pierre de Fermat, 1601-1665)虽然学的是法律,从事的也是律师的职业,但他对数学却有浓厚的兴趣,在公余时间常读数学书,并自己从事一些数学研究。他在阅读希腊数学家丢番图(Diophontus)的《算术》一书中论述求解x2 + y2 = z2 的一般解的问题时,在书的空白处,用笔写下这样的心得:“反过来说不可能把一个立方数分拆为两个立方数的和,一个四方数分拆成两个四方数之和。更一般地,任何大于二的方数不能分拆为同样方数的两个之和。我已发现了一个绝妙的证明,但因为空白太小,写不下整个证明”。用数学语言来表达,费尔马的结论是:

当n≥3时, xn + yn = zn 没有正整数解。

人们不相信费尔马找到了这个结论的证明,或者正如成千上万的后来人一样,自以为证明出来而实际上搞错了,因为许多有名的数学家都试图证明它,但都以失败而告终。然而费尔马确实创造了无穷下降方法,证明了n = 4 的情况。n = 3 的情况是瑞士大数学家欧拉(Leonard Euler, 1707- 1783)在1753年给出的。19世纪初实际上只有n = 3,n = 4两种情况得到证明。而n = 5的情况则是在经历了半个多世纪,一直到1823年至1825年才首次完全证明。费尔马大定理对当时的数学家是一个最大的挑战。为了表示学术界对它的重视,1816年法国科学院首次为费尔马大定理设立了大奖。许多大数学家,其中包括当时顶尖的数学家,法国的高斯和法国的柯西都曾热衷于这个问题。

在早期尝试解决费尔马大定理的英雄豪杰里有一位巾帼英雄,她是德国的苏菲·日尔曼(Sophie Germain, 1776-1831)。小时候她是一个很害羞、胆怯的女孩,靠自学阅读和研究数学。由于当时女姓在数学上受到歧视,她就用一个男性化名同一些大数学家通信,其中包括高斯和勒让德,她的才能使得这些一流的数学家大为惊讶。

我们现在回过头来看看勾股定理

a2 + b2 = c2

如果我们在方程两边同除以c2,我们得到

= 1

设= x , = y, 则要找正整数a, b, c 满足a2 + b2 = c2 等价找有理数x, y, 使得(x, y)满足x2 +y2 = 1。 (x, y) 可以看成是平面上单位图上的一个点,x, y都为有理数的点(x, y)称为有理点。这样我们就把由勾股定理得到的方程是否有正整数解化为平面上的单位圆上是否有有理点。同样xn + yn = zn是否有正整数解等价于平面上的曲线xn + yn =1上是否有有理点的问题。我们称由方程xn + yn =1定义的曲线为费尔马曲线。

在中学数学里,我们对平面代数曲线有一些了解,在解析几何里,对二次曲线进行了完整的分类。平面上二次代数曲线有

椭圆:;

双曲线:,或;

抛物线:

代数几何学在解决费尔马大定理起到了非常大的作用。代数几何学是解析几何的自然延续,在解析几何中,我们用坐标方法通过方程来表示曲线和曲面,通常只研究一次、二次曲线,即直线、椭圆、双曲线及抛物线。三次及三次以上的曲线一般就不再仔细研究了。

代数几何与解析几何的一个主要不同点是,解析几何用次数来对曲线和曲面分类,而代数几何学则用一个双有理变换不变量-亏格来对代数曲线进行分类。通过亏格g ,所有代数曲线可分为三大类:

g=0: 直线、椭圆、圆锥曲线;

g=1: 椭圆曲线;

g其他曲线,特别是费尔马曲线。

费尔马曲线的亏格 所以对的费尔马方程,1929年英国数学家莫德尔(Lewis J. Mordell)提出著名的猜想:亏格的代数曲线上的有些点数目只有有限多个。1929年西格尔证明亏格的代数曲线上的整点(即坐标均为整数点)数目只有有限多个。

当然,一般有理数的数目要比整点数目多得多。

1983年,德国数学家法尔廷斯证明了莫德尔猜想。他的证明用到了多位数学家的成果。他的结果被认为是上世纪的一个伟大定理,他因此而获得1986年的菲尔兹(Fields)奖。从莫德尔猜想我们推出:如果xn + yn = zn有非平凡的互素的正整数解,那么解的个数只有有限多个。希斯-布朗利用莫德尔猜想,证明了对于几乎所有的素数,费尔马大定理成立。

由于莫德尔猜想的证明,数学家看出了一系列猜想最终可导致证明费尔马大定理。

1983年,史皮娄(Lucien Szpiro)提出史皮娄猜想,并证明由史皮娄猜想可以推出,对于充分大的指数,费尔马大定理均成立。1985年,与塞尔(D.W.Masser)等人提出一系列等价猜想,其中一个称为abc猜想,由它可推出史皮娄猜想。1987年,史皮娄又提出一系列猜想,由它们也能推出史皮娄猜想。这些猜想似乎更容易下手,但至今一个也没有证明。

1987年,塞尔由伽罗华表示出发提出一些更强的猜想,称为塞尔强(弱)猜想。由它不仅可以推出费尔马大定理,还可推出许多其他猜想,但这条路最终也没有能走通。

1971年,埃莱古阿计(Yres Hellegouarch),最早把椭圆曲线与费尔马大定理联系起来,然而,符莱(Gerhard Frdy)却是第一个把方向扭转到正确轨道上的人。1985年,符莱证明如果费尔马方程(为不少于5的素数)有非零解(即,则可设计一条椭圆曲线其中不妨假定为互素的非零整数,显然它是有理数域上的椭圆曲线。

日本数学家谷山丰(1927—1958)在1955年召开的会议上研究了椭圆曲线的参数化问题。一条曲线的参数化对于曲线表示和研究曲线的性质有很大帮助,这在中学学习解析几何时我们就已经看到了。椭圆曲线是三次曲线,它也可以用一些函数进行参数表示。但是,如果参数表示所用的函数能用模形式,(模函数是上半复平面上处处亚纯函数的一类,模形式是模函数的推广),则我们称之为模曲线。模曲线有很好的性质。我们希望任一椭圆曲线都是模曲线,这就是谷山一志村猜想。此后,数学家把证明费尔马大定理化为证明对某一类椭圆曲线,谷山一志村猜想成立。

英国数学家维尔斯正是沿着这一道路,在经过漫长的7年探索,终于在1993年6月取得突破。最终在一九九五年完全证明费尔马大定理。

作为本文的结束,我想给数学爱好者提出一点自己的建议:数学中有一些看上去很简单的结论,如歌德巴赫猜想、费尔马大定理等要去证明却是非常困难的。许多数学爱好者认为只要有好的“灵感”就能用初等数学的方法或不多的数学工具就能解决世界难题,结果白白花费了许多宝贵的时间。最近经常从报上、网上看到某某解决了某某难题,一些媒体不负责任的报道可能会误导一些数学爱好者。让读者了解费尔马大定理的解决过程,从而希望数学爱好者不要盲目地作世界难题,这正是本文的初衷之一。如果你真的热爱数学,立志于攻克数学难题,那么应该先学习某一专业的基础知识,了解这一问题的国际研究动态,搞清楚前人的工作,然后再开展自己的研究。

(本文的写作参考了胡作玄教授的《从毕达哥拉斯到费尔马》及《350年历程--从费尔马到维尔斯》,在此致谢。由于本人的专业不是数论,很可能在文中会有错误,望读者指正。想进一步了解的读者可以读一读胡作玄教授这两本书。)

[back]

勾股定理的应用

勾股定理是初中数学中重要定理之一.它揭示了一个直角三角形三条边之间的数量关系,它可以解决许多直角三角形中的计算与证明问题,是解决直角三角形问题的主要依据之一,在生产生活实际中用途很大,因而它是初中数学中,应该重视而且必须解决好的一个问题,我们对此要有深刻的认识和广泛的理解.

一、注重初始学习,了解定理发现发展史,激发学习兴趣

在初始学习中,根据教材内容,结合我国数学发展的历史,了解了我国古代在勾股定理研究方面的成就,激发我们热爱祖国悠久文化的思想感情,培养民族自豪感.同时,结合当今世界上许多科学家探寻科学的事例,来激发自己学习数学的兴趣,激励自己奋发图强,努力学习,为将来担负起振兴中华之重任打下坚实基础.

例1 当今世界上许多科学家正在试探寻找其他星球的“人”,为此向宇宙发出了许多信号.如地球上人类的语言、音乐、各种图形等.据说我国著名的数学家华罗庚,曾建议发射一种勾股定理的图形,如果宇宙人是“文明的人”,那么他们一定会认识这种“语言”的,你认为这有可能吗?

二、重视定理结构的剖析,正确理解和应用定理

在勾股定理学习之前,虽然我们已具有直角三角形和命题等一些基础知识,但对勾股定理了解后,不仅要对定理结构加以剖析,使自己正确理解,能准确应用定理或其简单变形去解题就行,而且要向课外引伸.

例2 试将命题“直角三角形两条直角边的平方和等于斜边的平方”改写成“如果……,那么……”的形式.

例3 求边长为a的等边三角形的高.

(1)AD的长.

(2)△ABD的面积.

说明 例2旨在使我们明确勾股定理的题设与结论,以便正确应用.

例3 画出图形后,显然直接应用勾股定理即可求解.

例4 需利用勾股定理的简单变形b2=c2-a2去进行计算.

三、适时提高,灵活应用定理

在对勾股定理应用的研究过程中,可选择难度稍大一点的例题,训练自己应用定理的灵活性.

例5 如图2,AD是△ABC的边BC上的高.

求证:AB2+CD2=AC2+BD2

说明 在分析此题时,首先应考虑在图形中,有两个含一条公共边的直角三角形——△ABD和△ACD,而求证的四条线段AB、CD、AC、BD都具有平方形式,且又分别为△ABD和△ACD的斜边和直角边.显然应当想到应用勾股定理,并且要把同一个直角三角形的有关的边集中在一起.因此,可将结论的形式转化为求证AB2-BD2=AC2-CD2,这样就容易看到等式的左、右两边都等于AD2,于是得到证法.

四、注意定理应用后的探索学习,适时赋于定理应用的新方法

在应用定理解证题后,进行深入探究,既有利于培养我们的分析问题和创造性能力,又能使勾股定理应用余音不绝.

例6 在△ABC中,∠C=90°,求证sin2A+sin2B=1.

说明 在解直角三角形中,若已知其三边的两条,可用勾股定理求出第三边的长.解题后深入研究不难发现,将勾股定理与锐角三角函数结合可证得sin2A+sin2B=1.

例7 如图3,在△ABC中,AB=AC,D为BC边上任一点,求证:AB2-AD2=BD·DC.

说明 本例虽不象例5那样,有符合勾股定理的条件,但若将例5的证法,结合本例结论进一步研究,不难发现本例也是符合勾股定理形式的.(若令BD·DC=m2,则待证式即AB2-AD2 =m2)

分析此题时,考虑求证结论中出现线段平方的形式,可能用勾股定理.但因图中又没有出现直角三角形,因此需要添加垂线,构造直角三角形.由于求证中有AB2和AD2,故必须用AB、AD去组成直角三角形,所以需作AE⊥BC于E.如图3,则由勾股定理可推出:

怎样由BE2-ED2推出BD·DC呢?这就需要利用平方差公式

BE2-ED2=(BE+ED)(BE-ED),

而 BE+ED=BD,

又由等腰三角形的性质可知BE=CE,从而推出BE-DE=CD.

所以BE2-ED2=BD·DC,于是问题得证.

五、定理与其逆定理相结合,深化定理的理解与应用

勾股定理与它的逆定理,反映了性质定理与判定定理之间的关系,正确区分勾股定理与其逆定理,可进一步加深对直角三角形的性质与判定之间关系的认识.在学习和研究的过程中,何时用定理,何时用逆定理,特别是勾股定理逆定理的应用,不仅可以加深对勾股定理的理解,而对开阔我们的眼界,拓宽知识面,了解数学中各种方法有很大意义.

例8 设n为自然数,求证:以2n2+2n,2n+1,2n2+2n+1为边的三角形是直角三角形.

说明 例8主要是根据勾股定理的逆定理将其三边化为a2+b2=c2的形式.

例9则要根据勾股定理分析得出作法.

六、探究定理的证明,拓宽定理的应用

目前,世界上可以查到的证明勾股定理的方法有几百种.教材中虽已对勾股定理进行了证明,但在研究过程中,若能据自己的能力,适当了解和学会教材外的一些证法,不仅有利于定理的应用和理解,而且能使我们获得探寻解决问题的新方法,更利于培养我们的创造性思维能力.

例10 下面是用分割图形证明勾股定理的方法.试根据所给图形,说明怎样证明勾股定理,你还能设计其它分割方法证明勾股定理吗?

说明:对例10的研究,不仅使我们掌握了多种证明问题的方法,培养思维能力,而且丰富了研究数学问题的方法和手段.

勾股定理作为在几何上占有重要地位而又十分著名的定理,它不仅在数学上而且在其他自然科学中也有广泛的应用[back]

小学一至六年级数学都有哪些类型

1、通过一个例子来讲解怎么只能笔和纸来计算整数开方。比如怎么计算根号七。

因为已经知道了根号七介于2和3之间,如下图:

2、其次,我们取2和3的中间数也就是2.5,因为2.5的平方是6.25,所以根号七是介于2.5和3之间的。

3、同样原理,我们取中间数2.75。

4、我们再取中间数2.625。

5、就这样,一直计算下去,看你要的精确度是多少,就可以计算到多少位小数,最后,我们可以得到根号七为2.645。

关于根号内因数的化简举例:化简√48

解:√48=√4*4*3=√16*3=4√3。

注意:根号内的数要分解(质)因数,能开方的都要开出来,如:√48=√4*12=2√12,这就没有化简彻底。

扩展资料:

一、根号简介:

根号是一个数学符号。根号是用来表示对一个数或一个代数式进行开方运算的符号。若a?=b,那么a是b开n次方的n次方根或a是b的1/n次方。开n次方手写体和印刷体用表示,被开方的数或代数式写在符号左方√ ̄的右边和符号上方一横部分的下方共同包围的区域中,而且不能出界。

二、计算公式:

成立条件:a≥0,n≥2且n∈N。

成立条件:a≥0, b≥0, n≥2且n∈N。

成立条件:a≥0,b>0,n≥2且n∈N。

成立条件:a≥0,b>0,n≥2且n∈N。

参考资料:

百度百科根号

小学数学奥数知识总结归纳30点

1.和差倍问题

和差问题 和倍问题 差倍问题

已知条件 几个数的和与差 几个数的和与倍数 几个数的差与倍数

公式适用范围 已知两个数的和,差,倍数关系

公式 ①(和-差)÷2=较小数

较小数+差=较大数

和-较小数=较大数

②(和+差)÷2=较大数

较大数-差=较小数

和-较大数=较小数

和÷(倍数+1)=小数

小数×倍数=大数

和-小数=大数

差÷(倍数-1)=小数

小数×倍数=大数

小数+差=大数

关键问题 求出同一条件下的

和与差 和与倍数 差与倍数

2.年龄问题的三个基本特征:

①两个人的年龄差是不变的;

②两个人的年龄是同时增加或者同时减少的;

③两个人的年龄的倍数是发生变化的;

3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;

4.植树问题

基本类型 在直线或者不封闭的曲线上植树,两端都植树 在直线或者不封闭的曲线上植树,两端都不植树 在直线或者不封闭的曲线上植树,只有一端植树 封闭曲线上植树

基本公式 棵数=段数+1

棵距×段数=总长 棵数=段数-1

棵距×段数=总长 棵数=段数

棵距×段数=总长

关键问题 确定所属类型,从而确定棵数与段数的关系

5.鸡兔同笼问题

基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;

基本思路:

①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):

②假设后,发生了和题目条件不同的差,找出这个差是多少;

③每个事物造成的差是固定的,从而找出出现这个差的原因;

④再根据这两个差作适当的调整,消去出现的差。

基本公式:

①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)

②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)

关键问题:找出总量的差与单位量的差。

6.盈亏问题

基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.

基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.

基本题型:

①一次有余数,另一次不足;

基本公式:总份数=(余数+不足数)÷两次每份数的差

②当两次都有余数;

基本公式:总份数=(较大余数一较小余数)÷两次每份数的差

③当两次都不足;

基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差

基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。

7.牛吃草问题

基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

基本特点:原草量和新草生长速度是不变的;

关键问题:确定两个不变的量。

基本公式:

生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);

总草量=较长时间×长时间牛头数-较长时间×生长量;

8.周期循环与数表规律

周期现象:事物在运动变化的过程中,某些特征有规律循环出现。

周期:我们把连续两次出现所经过的时间叫周期。

关键问题:确定循环周期。

闰 年:一年有366天;

①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;

平 年:一年有365天。

①年份不能被4整除;②如果年份能被100整除,但不能被400整除;

9.平均数

基本公式:①平均数=总数量÷总份数

总数量=平均数×总份数

总份数=总数量÷平均数

②平均数=基准数+每一个数与基准数差的和÷总份数

基本算法:

①求出总数量以及总份数,利用基本公式①进行计算.

②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②。

10.抽屉原理

抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。

例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:

①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1

观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。

抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:

①k=[n/m ]+1个物体:当n不能被m整除时。

②k=n/m个物体:当n能被m整除时。

理解知识点:[X]表示不超过X的最大整数。

例[4.351]=4;[0.321]=0;[2.9999]=2;

关键问题:构造物体和抽屉。也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。

11.定义新运算

基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

关键问题:正确理解定义的运算符号的意义。

注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。

12.数列求和

等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。

基本概念:首项:等差数列的第一个数,一般用a1表示;

项数:等差数列的所有数的个数,一般用n表示;

公差:数列中任意相邻两个数的差,一般用d表示;

通项:表示数列中每一个数的公式,一般用an表示;

数列的和:这一数列全部数字的和,一般用Sn表示.

基本思路:等差数列中涉及五个量:a1 ,an, d, n,sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。

基本公式:通项公式:an = a1+(n-1)d;

通项=首项+(项数一1) ×公差;

数列和公式:sn,= (a1+ an)×n÷2;

数列和=(首项+末项)×项数÷2;

项数公式:n= (an+ a1)÷d+1;

项数=(末项-首项)÷公差+1;

公差公式:d =(an-a1))÷(n-1);

公差=(末项-首项)÷(项数-1);

关键问题:确定已知量和未知量,确定使用的公式;

13.二进制及其应用

十进制:用0~9十个数字表示,逢10进1;不同数位上的数字表示不同的含义,十位上的2表示20,百位上的2表示200。所以234=200+30+4=2×102+3×10+4。

=An×10n-1+An-1×10n-2+An-2×10n-3+An-3×10n-4+An-4×10n-5+An-6×10n-7+……+A3×102+A2×101+A1×100

注意:N0=1;N1=N(其中N是任意自然数)

二进制:用0~1两个数字表示,逢2进1;不同数位上的数字表示不同的含义。

(2)= An×2n-1+An-1×2n-2+An-2×2n-3+An-3×2n-4+An-4×2n-5+An-6×2n-7

+……+A3×22+A2×21+A1×20

注意:An不是0就是1。

十进制化成二进制:

①根据二进制满2进1的特点,用2连续去除这个数,直到商为0,然后把每次所得的余数按自下而上依次写出即可。

②先找出不大于该数的2的n次方,再求它们的差,再找不大于这个差的2的n次方,依此方法一直找到差为0,按照二进制展开式特点即可写出。

14.加法乘法原理和几何计数

加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+ m2....... +mn种不同的方法。

关键问题:确定工作的分类方法。

基本特征:每一种方法都可完成任务。

乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这件任务共有:m1×m2....... ×mn种不同的方法。

关键问题:确定工作的完成步骤。

基本特征:每一步只能完成任务的一部分。

直线:一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。

直线特点:没有端点,没有长度。

线段:直线上任意两点间的距离。这两点叫端点。

线段特点:有两个端点,有长度。

射线:把直线的一端无限延长。

射线特点:只有一个端点;没有长度。

①数线段规律:总数=1+2+3+…+(点数一1);

②数角规律=1+2+3+…+(射线数一1);

③数长方形规律:个数=长的线段数×宽的线段数:

④数长方形规律:个数=1×1+2×2+3×3+…+行数×列数

15.质数与合数

质数:一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数。

合数:一个数除了1和它本身之外,还有别的约数,这个数叫做合数。

质因数:如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数。

分解质因数:把一个数用质数相乘的形式表示出来,叫做分解质因数。通常用短除法分解质因数。任何一个合数分解质因数的结果是唯一的。

分解质因数的标准表示形式:N=,其中a1、a2、a3……an都是合数N的质因数,且a1<a2<a3<……<an。

求约数个数的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)

互质数:如果两个数的最大公约数是1,这两个数叫做互质数。

16.约数与倍数

约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。

公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。

最大公约数的性质:

1、 几个数都除以它们的最大公约数,所得的几个商是互质数。

2、 几个数的最大公约数都是这几个数的约数。

3、 几个数的公约数,都是这几个数的最大公约数的约数。

4、 几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。

例如:12的约数有1、2、3、4、6、12;

18的约数有:1、2、3、6、9、18;

那么12和18的公约数有:1、2、3、6;

那么12和18最大的公约数是:6,记作(12,18)=6;

求最大公约数基本方法:

1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。

2、短除法:先找公有的约数,然后相乘。

3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。

公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

12的倍数有:12、24、36、48……;

18的倍数有:18、36、54、72……;

那么12和18的公倍数有:36、72、108……;

那么12和18最小的公倍数是36,记作[12,18]=36;

最小公倍数的性质:

1、两个数的任意公倍数都是它们最小公倍数的倍数。

2、两个数最大公约数与最小公倍数的乘积等于这两个数的乘积。

求最小公倍数基本方法:1、短除法求最小公倍数;2、分解质因数的方法

17.数的整除

一、基本概念和符号:

1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。

2、常用符号:整除符号“|”,不能整除符号“”;因为符号“∵”,所以的符号“∴”;

二、整除判断方法:

1. 能被2、5整除:末位上的数字能被2、5整除。

2. 能被4、25整除:末两位的数字所组成的数能被4、25整除。

3. 能被8、125整除:末三位的数字所组成的数能被8、125整除。

4. 能被3、9整除:各个数位上数字的和能被3、9整除。

5. 能被7整除:

①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。

②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。

6. 能被11整除:

①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。

②奇数位上的数字和与偶数位数的数字和的差能被11整除。

③逐次去掉最后一位数字并减去末位数字后能被11整除。

7. 能被13整除:

①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。

②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。

三、整除的性质:

1. 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。

2. 如果a能被b整除,c是整数,那么a乘以c也能被b整除。

3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。

4. 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。

18.余数及其应用

基本概念:对任意自然数a、b、q、r,如果使得a÷b=q……r,且0<r<b,那么r叫做a除以b的余数,q叫做a除以b的不完全商。

余数的性质:

①余数小于除数。

②若a、b除以c的余数相同,则c|a-b或c|b-a。

③a与b的和除以c的余数等于a除以c的余数加上b除以c的余数的和除以c的余数。

④a与b的积除以c的余数等于a除以c的余数与b除以c的余数的积除以c的余数。

19.余数、同余与周期

一、同余的定义:

①若两个整数a、b除以m的余数相同,则称a、b对于模m同余。

②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m同余,记作a≡b(mod m),读作a同余于b模m。

二、同余的性质:

①自身性:a≡a(mod m);

②对称性:若a≡b(mod m),则b≡a(mod m);

③传递性:若a≡b(mod m),b≡c(mod m),则a≡ c(mod m);

④和差性:若a≡b(mod m),c≡d(mod m),则a+c≡b+d(mod m),a-c≡b-d(mod m);

⑤相乘性:若a≡ b(mod m),c≡d(mod m),则a×c≡ b×d(mod m);

⑥乘方性:若a≡b(mod m),则an≡bn(mod m);

⑦同倍性:若a≡ b(mod m),整数c,则a×c≡ b×c(mod m×c);

三、关于乘方的预备知识:

①若A=a×b,则MA=Ma×b=(Ma)b

②若B=c+d则MB=Mc+d=Mc×Md

四、被3、9、11除后的余数特征:

①一个自然数M,n表示M的各个数位上数字的和,则M≡n(mod 9)或(mod 3);

②一个自然数M,X表示M的各个奇数位上数字的和,Y表示M的各个偶数数位上数字的和,则M≡Y-X或M≡11-(X-Y)(mod 11);

五、费尔马小定理:如果p是质数(素数),a是自然数,且a不能被p整除,则ap-1≡1(mod p)。

20.分数与百分数的应用

基本概念与性质:

分数:把单位“1”平均分成几份,表示这样的一份或几份的数。

分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

分数单位:把单位“1”平均分成几份,表示这样一份的数。

百分数:表示一个数是另一个数百分之几的数。

常用方法:

①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。

②对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。

③转化思维方法:把一类应用题转化成另一类应用题进行解答。最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。常见的处理方法是确定不同的标准为一倍量。

④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。

⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。有以下三种情况:A、分量发生变化,总量不变。B、总量发生变化,但其中有的分量不变。C、总量和分量都发生变化,但分量之间的差量不变化。

⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。

⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。

⑧浓度配比法:一般应用于总量和分量都发生变化的状况。

21.分数大小的比较

基本方法:

①通分分子法:使所有分数的分子相同,根据同分子分数大小和分母的关系比较。

②通分分母法:使所有分数的分母相同,根据同分母分数大小和分子的关系比较。

③基准数法:确定一个标准,使所有的分数都和它进行比较。

④分子和分母大小比较法:当分子和分母的差一定时,分子或分母越大的分数值越大。

⑤倍率比较法:当比较两个分子或分母同时变化时分数的大小,除了运用以上方法外,可以用同倍率的变化关系比较分数的大小。(具体运用见同倍率变化规律)

⑥转化比较方法:把所有分数转化成小数(求出分数的值)后进行比较。

⑦倍数比较法:用一个数除以另一个数,结果得数和1进行比较。

⑧大小比较法:用一个分数减去另一个分数,得出的数和0比较。

⑨倒数比较法:利用倒数比较大小,然后确定原数的大小。

⑩基准数比较法:确定一个基准数,每一个数与基准数比较。

22.分数拆分

一、 将一个分数单位分解成两个分数之和的公式:

① =+;

②=+(d为自然数);

23.完全平方数

完全平方数特征:

1. 末位数字只能是:0、1、4、5、6、9;反之不成立。

2. 除以3余0或余1;反之不成立。

3. 除以4余0或余1;反之不成立。

4. 约数个数为奇数;反之成立。

5. 奇数的平方的十位数字为偶数;反之不成立。

6. 奇数平方个位数字是奇数;偶数平方个位数字是偶数。

7. 两个相临整数的平方之间不可能再有平方数。

平方差公式:X2-Y2=(X-Y)(X+Y)

完全平方和公式:(X+Y)2=X2+2XY+Y2

完全平方差公式:(X-Y)2=X2-2XY+Y2

24.比和比例

比:两个数相除又叫两个数的比。比号前面的数叫比的前项,比号后面的数叫比的后项。

比值:比的前项除以后项的商,叫做比值。

比的性质:比的前项和后项同时乘以或除以相同的数(零除外),比值不变。

比例:表示两个比相等的式子叫做比例。a:b=c:d或

比例的性质:两个外项积等于两个内项积(交叉相乘),ad=bc。

正比例:若A扩大或缩小几倍,B也扩大或缩小几倍(AB的商不变时),则A与B成正比。

反比例:若A扩大或缩小几倍,B也缩小或扩大几倍(AB的积不变时),则A与B成反比。

比例尺:图上距离与实际距离的比叫做比例尺。

按比例分配:把几个数按一定比例分成几份,叫按比例分配。

25.综合行程

基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.

基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间

关键问题:确定运动过程中的位置和方向。

相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)

追及问题:追及时间=路程差÷速度差(写出其他公式)

流水问题:顺水行程=(船速+水速)×顺水时间

逆水行程=(船速-水速)×逆水时间

顺水速度=船速+水速

逆水速度=船速-水速

静水速度=(顺水速度+逆水速度)÷2

水 速=(顺水速度-逆水速度)÷2

流水问题:关键是确定物体所运动的速度,参照以上公式。

过桥问题:关键是确定物体所运动的路程,参照以上公式。

主要方法:画线段图法

基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。

26.工程问题

基本公式:

①工作总量=工作效率×工作时间

②工作效率=工作总量÷工作时间

③工作时间=工作总量÷工作效率

基本思路:

①假设工作总量为“1”(和总工作量无关);

②假设一个方便的数为工作总量(一般是它们完成工作总量所用时间的最小公倍数),利用上述三个基本关系,可以简单地表示出工作效率及工作时间.

关键问题:确定工作量、工作时间、工作效率间的两两对应关系。

经验简评:合久必分,分久必合。

27.逻辑推理

基本方法简介:

①条件分析—假设法:假设可能情况中的一种成立,然后按照这个假设去判断,如果有与题设条件矛盾的情况,说明该假设情况是不成立的,那么与他的相反情况是成立的。例如,假设a是偶数成立,在判断过程中出现了矛盾,那么a一定是奇数。

②条件分析—列表法:当题设条件比较多,需要多次假设才能完成时,就需要进行列表来辅助分析。列表法就是把题设的条件全部表示在一个长方形表格中,表格的行、列分别表示不同的对象与情况,观察表格内的题设情况,运用逻辑规律进行判断。

③条件分析——图表法:当两个对象之间只有两种关系时,就可用连线表示两个对象之间的关系,有连线则表示“是,有”等肯定的状态,没有连线则表示否定的状态。例如A和B两人之间有认识或不认识两种状态,有连线表示认识,没有表示不认识。

④逻辑计算:在推理的过程中除了要进行条件分析的推理之外,还要进行相应的计算,根据计算的结果为推理提供一个新的判断筛选条件。

⑤简单归纳与推理:根据题目提供的特征和数据,分析其中存在的规律和方法,并从特殊情况推广到一般情况,并递推出相关的关系式,从而得到问题的解决。

28.几何面积

基本思路:

在一些面积的计算上,不能直接运用公式的情况下,一般需要对图形进行割补,平移、旋转、翻折、分解、变形、重叠等,使不规则的图形变为规则的图形进行计算;另外需要掌握和记忆一些常规的面积规律。

常用方法:

1. 连辅助线方法

2. 利用等底等高的两个三角形面积相等。

3. 大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点设置在特殊位置上)。

4. 利用特殊规律

①等腰直角三角形,已知任意一条边都可求出面积。(斜边的平方除以4等于等腰直角三角形的面积)

②梯形对角线连线后,两腰部分面积相等。

③圆的面积占外接正方形面积的78.5%。

29.立体图形

名称 图形 特征 表面积 体积

长方体 8个顶点;6个面;相对的面相等;12条棱;相对的棱相等; S=2(ab+ah+bh) V=abh =Sh

正方体 8个顶点;6个面;所有面相等;12条棱;所有棱相等;

本文来自作者[芷天]投稿,不代表雷雅号立场,如若转载,请注明出处:https://www.ajtg.com.cn/tg/460.html

(6)

文章推荐

  • 肖战有哪些作品?

    一、《陈情令》《陈情令》是由郑伟文、陈家霖联合执导,肖战、王一博、孟子义、宣璐、汪卓成、于斌、刘海宽主演,李若彤、陆剑民、黄子腾、修庆特别出演,沈晓海友情客串的古装仙侠剧。该剧根据墨香铜臭小说《魔道祖师》改编,以五大家族为背景,讲述了云梦江氏故人之子魏无羡和姑苏蓝氏含光君蓝忘机重遇,携手探寻往年真相

    2025年07月30日
    6
  • 公费师范生可以申请贫困生补助吗

    可以的,任何师范大学或者说任何大学的都能进行贫困认定,而申请助学金的国家助学金是付给了所有大学的地方,只是说她的名额限制不一样而已,所以你是免费师范生一也是可以进行贫困认定升学金来。而且免费师范生是。是几年在学校里面就是免费的,所以申请助学金是可以用于生活费的。1公费师范生是怎样选拔录取的?A1:

    2025年08月02日
    8
  • 肖战英文名为什么叫sean?

    sean,这个名字音译过来就是肖恩了,是和他的姓氏吻合了,所以他的英文名字才是这个。肖战微博名daytoy:Daytoy这个英文的意思是天天有玩具的意思,粉丝们在他名字后面加上这个英文字母目的是希望他天天开心,天天能有他想要的东西。肖战daytoy天天能战,战就胜利,这个是粉丝们对他的祝福,也是对他

    2025年09月01日
    30
  • 如何做好一名组工干部

    能做好一名“党性强、作风正、工作实、业务精”的合格干部,我认为应做到以下几点:一、坚持“三学”一学理论,理论是行动的先导,“理论上的成熟是政治上成熟的基础”。二学法律,依法治国是我们党和国家的基本方略,组工干部的先进性要体现在模范的带头学习法律和遵纪守法的具体行动中。三学经济,组工干部都必须努力学习

    2025年09月06日
    6
  • 定向运动有什么玩的啵-

    二.定向运动的分类:1.走向运动按运动工具的不同可分为两种;(a)徒步走向:如传统定问越野跑;接力定向;积分定问;夜间走向;五日定向;公园定向等。(b)工具走向:如滑雪定向;山地自行车定向;摩托车定向等。2.定向运动按性别的不同可分为男子组和女子组;3.定向运动按年龄的不同可分

    2025年09月08日
    7
  • vivo如何查看内存

    若指的是查看手机存储空间,进入设置--运存与存储空间--即可查看存储空间。(部分机型需进入设置--更多设置--存储中进行查看。)若指的是查看购买的内存卡大小,可以咨询购买方了解,也可以安装在手机中,进入文件管理界面查看内存卡空间大小;更多使用疑惑可进入vivo官网--我的--在线客服--输入人工,咨

    2025年09月08日
    6
  • 实测教程”功夫川麻如何才赢”(原来确实是有挂)

    您好:功夫川麻如何才赢这款游戏是可以开挂的,软件加微信【添加图中QQ群】确实是有挂的,很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到其他人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的,添加客服微信【添加图中QQ群】安装软件.

    2025年09月09日
    6
  • 开挂辅助工具“微乐河北麻将万能开挂器免费通用版”其实确实有挂

    开挂辅助工具“微乐河北麻将万能开挂器免费通用版”其实确实有挂>>>您好:微乐河北麻将万能开挂器免费通用版,软件加微信【】确实是有挂的,很多玩家在微乐河北麻将万能开挂器免费通用版这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到其他人的牌一样。所以很多小

    2025年09月12日
    2
  • 必看教程“微乐湖南麻将小程序必赢神器免费”其实确实有挂

    您好:微乐湖南麻将小程序必赢神器免费这款游戏是可以开挂的,软件加微信【添加图中QQ群】确实是有挂的,很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到其他人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的,添加客服微信【添加图中QQ群】安装软

    2025年09月12日
    2
  • 实测分享“决胜麻将开挂教程”附开挂脚本详细步骤

    无需打开直接搜索微信:本司针对手游进行,选择我们的四大理由:1、软件助手是一款功能更加强大的软件!无需打开直接搜索微信:2、自动连接,用户只要开启软件,就会全程后台自动连接程序,无需用户时时盯着软件。3、安全保障,使用这款软件的用户可以非常安心,绝对没有被

    2025年09月13日
    4

发表回复

本站作者后才能评论

评论列表(4条)

  • 芷天
    芷天 2025年07月30日

    我是雷雅号的签约作者“芷天”!

  • 芷天
    芷天 2025年07月30日

    希望本篇文章《根号怎么化简啊?》能对你有所帮助!

  • 芷天
    芷天 2025年07月30日

    本站[雷雅号]内容主要涵盖:生活百科,小常识,生活小窍门,知识分享

  • 芷天
    芷天 2025年07月30日

    本文概览:根号化简方法是将根号下的数字拆分成一个完全平方数和某个数字的乘积,然后将完全平方数开平方放到根号外面,但前提是根号内的是整数,如果是分数,则将该分数拆分成一个分数的平方数和某个...

    联系我们

    邮件:雷雅号@sina.com

    工作时间:周一至周五,9:30-18:30,节假日休息

    关注我们